The 27 (or so) Habits

of Highly Effective

VFP Developers
Art Bergquist

Visionpace
17501 E. Highway 40, #218

Independence, MO 64055

abergquist@visionpace.com
abergquist@sbcglobal.net
All sorts of tips and tricks I've gleaned over the years

to simplify and generally facilitate VFP development

Table of Contents

3Options to facilitate VFP development

3(Don’t be lazy WRT) Naming Conventions!

5Keyboard shortcuts (the keyboard is your friend!)

8Copy- (or Cut)-and-paste rather than re-type!

10USE IN SELECT(<Work Area>) to close a work area

10Employ SQL-SELECTs “TO SCREEN” clause to determine if a record exists

11Make use of methods for complex Dynamic… grid settings

12Debugging errors that occur only in production code

13When a “Watch Window” expression goes in and out of scope

14Employ “white space” in your code

14When working with macro substitutions …

14… bring “closure” to them

15… don’t embed them

15Character (string, text) delimiters

16Dump unnecessary leading equals signs (“=”)!

17Use the "C" flavor/variation of string functions

17Employ LEFTC(<string>, <n>) in lieu of SUBSTR…(<string>, 1, <n>)

18Replace ! with NOT

18(but) Employ "positive" logic whenever possible

18When indenting, indent two (2) spaces

19(Right-)align comments (and semicolons) in “compound statements

19Employ # in lieu of …<> … and … != … and NOT …

19"Normalize" case when comparing character expressions

21Use TEXT…ENDTEXT for “cleaner” coding

21When initializing a grid column’s .ControlSource

21When initializing a memory variable to a SQL-SELECT string

22When loading up an array to be the RowSource for a combobox

22SPACE() … the final frontier

22Finding and replacing text in the Command Window

23Practice safe REPLACE-ing (in a non-current work area)

24Add pizzazz to your forms with Wingdings!

25GPF-ing under various circumstances

25C0000005 errors

26Seeing all GetPict()-supported file types

27Eliminating all errors in your VFP code!

27Performance vs. maintainability

28The final word

Options to facilitate VFP development
· 'Tools | Options'
i. View tab (maximize lists for less scrolling and/or typing):
· Most Recently Used list
 contains 24 items

· List display count
: 30

ii. Editor tab (more quickly detect incorrectly delimited strings):

· at the very least, set the Background color of 'Strings' to yellow (like a highlighter).

· I also like to set the Foregound color of 'Comments' to green (to distinguish comments from code).

· In the same vein, I like to maximize windows to see as much code as possible at one time and, as a result, to not have to scroll as often.

 (Don’t be lazy WRT) Naming Conventions!
_VFP.Help(HOME() + 'Dv_FoxHelp.CHM', , 'Naming Conventions')
· Constant Naming Conventions
· I agree with Microsoft’s recommendations
· Object Naming Conventions
· I agree with Microsoft’s recommendations with the following three (3) exceptions:

· ctr (rather than cnt) for Container

· cus (rather than <user-defined>) for Custom

· pjh (rather than prj) for Project Hook
· Don’t be lazy WRT object names! For example, when you place a new shape onto a form, VFP will name it something like 'shape1'. I recommend immediately changing its .Name to something (more) mnemonic (e.g., shpBackgroundColor). You benefit in at least two (2) ways:

· First, you employ the object naming convention that Microsoft suggests in the Object Naming Conventions topic (but, interestingly, does not follow itself [!] when you specify the shape in the first place [by clicking and dragging it from the Forms Controls toolbar]…)

· Second, even though you may not currently reference the object in your code (especially if you just created it <g>), you may — in the future — have to reference that object’s name in code
. At that point, it will be mnemonic (read: self-documenting) and you — as well as developers maintaining your code in the future — won’t have to pull out their hair.
· Variable Naming Conventions

· in addition to the Hungarian standard recommended by Microsoft (in the "Variable Naming Conventions" help topic
), I also advocate employing:

· camel-notation (capitalizing words within the name); e.g., is LNNOWHERE lnNowHere or lnNoWhere?
· mnemonic variable names (e.g., in lieu of lnTally, employ a meaningful name like lnNonBillableDays)

· Table Field Naming Conventions
· I normally do not include the data type as the first character of a field name but I did employ Microsoft’s recommendation for table field naming conventions in one (1) project several years ago. I have to admit that it does document the data type of the field within the name (making it easier, for example, to construct the JOIN clauses in SQL-SELECT statements) and, since we can have up to 128 characters in field names for a table contained in a database, we don’t lose a “precious” character (cf. “in the old days” [as well as in free tables today], we could [can] only have a maximum of ten [10] characters in a field name).
· Window Naming Conventions
· I cannot recall ever employing the DEFINE WINDOW command in Visual FoxPro since I normally (i.e., practically 100% of the time) employ the VFP Form and Class Designers for designing forms (a.k.a., screens).

Keyboard shortcuts (the keyboard is your friend!)
I find that I can develop much faster with a keyboard shortcut than by doing the equivalent process with a mouse.
Here are a few of my favorite shortcuts:

	Keyboard shortcut
	Action

	F1
	Display Help topics or context-sensitive Help on an active item (e.g., highlighted keyword in an editor window or the current property in the Properties Sheet/window).

	
	

	Ctrl+A
	Select All text within editing windows as well as within the Command Window

	Ctrl+C
	Copy the currently-highlighted text

	Ctrl+E
	Run a form from within the Form Designer.

	Ctrl+F
	Fire up the Find dialog

	Ctrl+F2
	(Re-)Display the Command Window.

	Ctrl+F4
	Close the active window.

	Ctrl+F10
	Toggle window size between maximum and restore.

	Ctrl+J
	Project Info when in the Project Manager

	Ctrl+P
	Same as selecting 'File | Print' from the VFP menu

	Ctrl+U
	Makes the selection all lowercase.

	Ctrl+Shift+U
	Makes the selection all uppercase.

	Ctrl+V
	Paste text (i.e., copy text from the Windows clipboard into the current window)

	Ctrl+W
	Save changes and close the current text window or dialog box.

	Ctrl+X
	Cut (i.e., copy to the Windows clipboard and then delete) the currently-highlighted text

	Ctrl+Z
	Undo the last editing operation.

	
	

	Ctrl+Home

	Go to the:

· top (i.e., first line) of the following:

· Command Window

· .PRG editor

· method editors (form and class)

· memo field editor
· first record of a cursor or table in a BROWSE
- When on a memo field/column in a BROWSE, opens up the memo field in(to) its own (editor) window.

	Ctrl+End
	Go to the::

· bottom (i.e., last line) of the following:

· Command Window

· .PRG editor

· method editors (form and class)

· memo field

· last record of a cursor or table in a BROWSE

	Ctrl+LeftArrow
	Move the cursor one word to the left (if you’re at the beginning of a word). Move the cursor to the beginning of the word (if you’re on any character other than the first character of a word).

	Ctrl+Shift+LeftArrow
	Highlight the word to the left of the cursor (equivalent to <DoubleClick>ing on the word itself).

	Ctrl+RightArrow
	Move the cursor to the beginning of the next word (to the right).

	Ctrl+Shift+RightArrow
	Highlight the word to the right of the cursor (equivalent to <DoubleClick>ing on the word itself).

	
	

	Shift+F10
	Display a context (shortcut) menu in:

· the Command Window

· a .PRG editor

· a method editor (form or class)

· a memo field

Equivalent to <Right-Click>ing with the mouse.

Other Keyboard shortcuts you might not have been aware of:

	Ctrl+Enter
	In the Command Window, allows you to "insert" a line in between other lines without executing any lines.

	Ctrl+F1
	Cycle through windows.

	Ctrl+Backspace
	Delete a word to the left of the cursor.

	Ctrl+UpArrow
	Highlight text and move up one line.

	Ctrl+DownArrow
	Highlight text and move down one line.

	Ctrl+Tab
	Go to the next page in a pageframe

	Ctrl+Shift+Tab
	Go to the previous page in a pageframe

In VFP’s Print Preview Window:

	G
	Open the Goto page dialog.

	L
	Toggle between various zoom levels.

	Z
	Zoom in and out of the page.

	<Home>
	Move to the first page in the Print Preview window.

	<End>
	Move to the last page in the Print Preview window.

Windows shortcut keys:

	Ctrl+Alt+Delete

	Bring up the Windows task manager.

	Ctrl+Alt+Shift
	Hide all child windows while the keys are pressed down (makes it easy to see output displayed in the main application window).

	[Windows Key]+D
	Bring the desktop to the top of all other windows.

	[Windows Key]+M
	Minimize all windows.

	[Windows Key]+Shift+M
	Undo the minimize done by [Windows Key] + M and [Windows Key] + D.

	[Windows Key]+E
	Open Windows Explorer.

	[Windows Key]+F
	Display the Windows Search / Find feature.

	[Windows Key]+<Ctrl>+F
	Display the search for computers window.

	[Windows Key]+<F1>
	Display Windows help.

	[Windows Key]+R
	Open the run window.

	[Windows Key] + <Pause / Break key>
	Open the system properties window.

	[Windows Key]+U
	Open Utility Manager.

	[Windows Key]+L
	Lock the computer (Windows XP and above only).

More keyboard shortcuts for Windows:

	Keyboard shortcut
	Action

	Alt + Tab
	Switch between open applications.

	Alt + Shift + Tab
	Switch backwards between open applications.

	Alt + Print Screen
	Take a screen shot only for the program you are currently in.

	Ctrl + Esc
	Bring up the Windows Start menu.

	Alt + Esc
	Switch between open applications on the taskbar.

	F2
	Rename selected file.

	F3
	Start find from desktop.

	F4
	Open the drive selection dropdown listbox when you are browsing (via Windows Explorer).

	F5
	Refresh contents (same as selecting ‘View | Refresh’).

	Alt + F4
	Close current open program.

	Ctrl + F4
	Close window in program.

	Ctrl + (the '+' key on the keypad)
	Automatically adjust the widths of all the columns in Windows Explorer.

	Alt + Enter
	Open properties window of selected icon or program.

	Shift + F10
	Simulate right-click on selected item.

	Shift + Del
	Delete programs/files without first putting them into the Recycle Bin.

For a complete listing of VFP keyboard shortcuts, see the "Keyboard Shortcuts" help topic:
_VFP.Help(HOME() + 'Dv_FoxHelp.CHM', , 'Keyboard Shortcuts')

"Mouse Shortcuts": Although, technically, not keyboard shortcuts, I thought I would mention that, in addition to:

· <Double-Click>, which highlights the current word,

· <Triple-Click> highlights the current line
Copy- (or Cut)-and-paste rather than re-type!
Copy- (or Cut)-and-paste as much as possible; avoid re-typing code! For example:

LOCAL lnTotalInvoice
&& Type only one (1) of the instances of 'lnTotalInvoice'
lnTotalInvoice = …
&& and then copy-and-paste it for all other instances
This helps prevent inadvertent typos (are there any other kind?!) from creeping into your code.

It is also helpful when you communicate with other developers (e.g., via e-mail when posting to an on-line news group or message board) so that you don’t accidentally modify the code in question (again introducing that inadvertent typo <g>).

Doug Carpenter reminded me of a trick when working with memory variables that have been declared LOCAL and PUBLIC (but not PRIVATE):

typing ZLOC followed by the <Spacebar> in a .Prg file/method causes VFP to display an IntelliSense list of available LOCAL and PUBLIC memvars and parameters.
Here is an example of the list that displays after you press the <Spacebar>:
[image: image1.png]
USE IN SELECT(<Work Area>) to close a work area
In lieu of:

IF USED(<Work Area>)

 USE IN '<Work Area>'

ENDIF
and:

USE IN IIF(USED(<Work Area>) …
employ code like the following:

 USE IN SELECT('<Work Area>')
Like the first example above, this one will work regardless of whether the work area is in use or not (the second example will bomb if the specified work area is not in use).
Employ SQL-SELECTs “TO SCREEN” clause to determine if a record exists
To determine if a record exists in a table, I used to send the results of a SQL-SELECT to an array, like so:

.
.
.
LOCAL ARRAY laRADate[1]
_Tally = 0

SELECT CH_RADate

;

 FROM MM!ClaimHeader

;

 WHERE CH_RADate = ldMon_RADate
;
 INTO ARRAY laRADate

IF _Tally = 0

 MESSAGEBOX(TRANSFORM(ldMon_RADate) + ' is not a valid Remittance Advice ' + ;

 'Date.', 0, 'Invalid RA Date')

ENDIF
Sending the results of the SQL-SELECT TO SCREEN NOCONSOLE
 obviates the need to declare an array prior to doing the SQL-SELECT:
.
.
.
_Tally = 0

SELECT CH_RADate

;

 FROM MM!ClaimHeader

;

 WHERE CH_RADate = ldMon_RADate
;
 TO SCREEN NOCONSOLE
IF _Tally = 0

 MESSAGEBOX(TRANSFORM(ldMon_RADate) + ' is not a valid Remittance Advice ' + ;

 'Date.', 0, 'Invalid RA Date')

ENDIF
In different versions of VFP up to and including VFP 8, _Tally was not always reliably accurate (cf. http://foxproadvisor.com/doc/12139 [Cathy Pountney's "_TALLY trap tip]); if that is your experience, simply send the output to a CURSOR and then check the RECCOUNT() of the cursor.
Make use of methods for complex Dynamic… grid settings
In a grid’s Init() event method:

*--

* Set the .DynamicBackColor property for this column.

*--This.Column1.DynamicBackColor = [ThisForm.DynamicBackColorForThisColumn()]
In the form’s custom DynamicBackColorForThisColumn() method:

*---
* Method: DynamicBackColorForThisColumn()
* Purpose: Handles the initialization of DynamicBackColor for the grid's Column

*

* Notes: It is *far* easier to put the logic into this method (and allows

*

us to document it thoroughly) rather than trying to "stuff" text

*

into the grid's .Column1.DynamicBackColor property.
*

* Plan Codes:

*

01 - Bill full cost

*

07 - Zero AtP (do not send bill)

*

08 - Zero AtP (do send bill)

*---
LOCAL lcColor
DO CASE

 CASE AtP_PlanCd = '01'

 lcColor = 'RGB(255, 255, 255)'
 CASE AtP_PlanCd = '07'

 lcColor = 'RGB(0, 0, 0)'
 CASE AtP_PlanCd = '08'
 lcColor = 'RGB(192, 192, 192)'
 OTHERWISE
 lcColor = '<some default color>'
ENDCASE
RETURN lcColor
The above could have been coded in the grid’s Init() event method as follows:
*---

* Set the .DynamicBackColor property for this column.

*---

This.Column1.DynamicBackColor = [IIF(AtP_PlanCd = '01', 'RGB(255, 255, 255)', ;
 IIF(AtP_PlanCd = '07', 'RGB(0, 0, 0)', IIF(AtP_PlanCd = '08', ;

 'RGB(192, 192, 192)', '<some default color>')))]
Which implementation do you think is easier to read, debug and maintain?
Even with VFP 9's new ICASE() function, it's still challenging to read, debug and maintain:
This.Column1.DynamicBackColor = [ICASE(AtP_PlanCd = '01', 'RGB(255, 255, 255)', ;
 AtP_PlanCd = '07', 'RGB(0, 0, 0)', AtP_PlanCd = '08', 'RGB(192, 192, 192)', ;
 '<some default color>')]
(By the way, the form-level method could alternatively be implemented as a [class-level] method of a grid class.)
Debugging errors that occur only in production code
When I cannot replicate an error in development and, as a result, am forced to debug the problem with an .EXE, I insert the following line:
MESSAGEBOX('<n>. ' + PROGRAM() + ' ...')

at "strategic" points in the program (e.g., before calling a function, method, procedure, etc.). I start "n" at 1 and increment by 1 in subsequent MESSAGEBOX() calls. The last number that displays in a MESSAGEBOX() before an error occurs helps me narrow down exactly where the problem is occurring. If necessary, I delete the original MESSAGEBOX() calls and then insert new MESSAGEBOX() calls "closer" to where the error is occurring. (Repeat as necessary [and, yes, you can try this at home <g>].)
Another technique would be to write text to a log file (.Log, .Txt, etc.) at various points of/during program execution. (This technique, by the way, is also useful for debugging COM objects since you cannot step through code in the VFP debugger nor can you [or are supposed to] send output to the screen from a COM object.)

In VFP 9, you can now do coverage logging not only at design time but also in .EXEs (via the SET COVERAGE command). Your client will need to send you the coverage log file
 (generated by the SET COVERAGE command) which you can then run through the Coverage Profiler yourself. Put code like the following toward the top of your main calling routine:

ON ERROR SET COVERAGE TO
SET COVERAGE TO <filename of your choice>.Txt
When a “Watch Window” expression goes in and out of scope
It used to be extremely frustrating to me when a “Watch Window” expression went in and out of scope. Now, I simply employ a technique I learned in Nancy Folsom’s short but excellent book Debugging Visual FoxPro Applications (http://www.hentzenwerke.com/catalog/debugvfp.htm).

On p. 53, Nancy indicates that:

If you know the value of the expression you’re looking for, you can create a “Break when expression is true” breakpoint and enter a conditional IIF() in the Expression field. The expression would look like the following:
IIF(TYPE(‘SomeExpression’) = ‘C’, SomeExpression = SomeValue, .F.)

This expression will cause the program to be suspended only when the value of the expression is what you expect.
Here’s an example of an expression:

IIF(VARTYPE(RECCOUNT(‘lv_WDates’)) = ‘N’, RECCOUNT(‘lv_WDates’) = 6, .F.)

Michael Cummings of the Los Angeles FoxPro Users Group (LA Fox) suggested an even better technique [viz., test for VARTYPE(…) = ‘U’]; here’s a translation of the above:

IIF(VARTYPE(RECCOUNT(‘lv_WDates’)) = ‘U’, .F., RECCOUNT(‘lv_WDates’) = 6)

Testing for an ‘U’ndefined data type obviates having to get the variable’s data type “right” in the breakpoint expression.
Patrick O’Hara of the Chicago FoxPro User/Developer Group (CFUDG) reminded me that

[Ctrl + B] brings up the Breakpoints dialog box.

Employ “white space” in your code

Make your code more readable (by not jamming it all together) and, therefore, easier to maintain.
Examples:

a) Code examples:

Without white space, the code is not as readable:

REPLACE CB_UnitsBilled WITH ;

 (lnBillableDaysTotal/DAY(GOMONTH(C_ClaimHeader.CH_From,1) ;

 -1))*CB_UnitsBilled

With white space, the code is more readable:

REPLACE CB_UnitsBilled;

 WITH ;

 (lnBillableDaysTotal / DAY(GOMONTH(C_ClaimHeader.CH_From, 1) ;

 - 1)) * CB_UnitsBilled

Of course, with good comments, the command makes the most sense:

* Units Billed = (Total Billable Days / Total # Days in month) x
* Authorized Units
REPLACE CB_UnitsBilled WITH (lnBillableDaysTotal /

;

 DAY(GOMONTH(C_ClaimHeader.CH_From, 1) - 1)) * CB_UnitsBilled

b) Inserting a space after each semicolon (“;”) makes your PATH setting in configuration files and SET PATH commands in VFP code more readable:

Without white space, the path is not as readable:

PATH = C:\App;C:\App\Data;C:\Program Files\Microsoft Visual FoxPro 9;C:\Stonefield\SfCommon;C:\Stonefield\SDT;C:\Stonefield\SDT\Source;C:\Stonefield\SDT\DBCX

With white space, the path is more readable:

PATH = C:\App; C:\App\Data; C:\Program Files\Microsoft Visual FoxPro 9; C:\Stonefield\SfCommon; C:\Stonefield\SDT; C:\Stonefield\SDT\Source; C:\Stonefield\SDT\DBCX
The above examples demonstrate intraline (horizontal) white space (making it easier to read your code from left to right); also employ interline (vertical) white space (to make your code easier to read from the top down).

When working with macro substitutions …
… bring “closure” to them
Get in the habit of always “closing” your macro substitution with a period (“.”); for example:

&lcSQL.

That way, when you employ macro substitution as part of an object hierarchy, VFP will properly parse the line; for example, if you have a form with a commandbutton whose .Name is 'Command1':
The following code sets the .Caption of 'Command1' to 'Process':
LOCAL lcCommandButton
lcCommandButton = 'cmdButton'
ThisForm.&lcCommandButton..Caption = 'Process' && Two (2) periods before .Caption
whereas the following code triggers a “Property COMMAND1CAPTION is not found” error:
LOCAL lcCommandButton
lcCommandButton = 'cmdButton'
ThisForm.&lcCommandButton.Caption = 'Process' && Only one (1) period before .Caption

… don’t embed them
lcControlName = 'cmdButton'
Replace the cryptic, embedded macro substitution:

? 'oForm.&lcControlName.'
with the following, easier-to-read (and, therefore, easier-to-maintain) code:

? 'oForm.' + lcControlName

(The above should run faster, too, since it does not employ macro substitution.)

Character (string, text) delimiters

In order of preference:

	
	Character Delimiter
	Analysis

	a)
	Apostrophe (')
	Saves time since it is just one character and does not require you to press and hold down the <Shift> key.

Easiest to read (least 'cluttered').

	b)
	Square brackets ([and])
	Requires two (2) different characters but still does not require you to press and hold down the <Shift> key.
Easy to read.

	c)
	Double quotes (")
	Just one character but requires you to press and hold down the <Shift> key.
“Busiest” in that it adds “white noise” to your code.

I switch to square brackets if there’s an apostrophe within the string. If the string contains (i) an apostrophe as well as (ii) one or both of the square brackets, then I employ double quotes.

Examples:

* My ideal is to employ apostrophes for delimiting character strings

WITH ThisForm

 .icTableItemExpression = 'ALLTRIM(' + .icMainAlias + '.FPC_FacilityName)'
ENDWITH

* Here, I am forced to employ square brackets due to presence of embedded
* apostrophes

This.icDynamicFormCaption = ['Notes for '] + ;

 [DTOC(C_AdmitDischarge.AD_AdmittedOn) + '-'] + ;

 [DTOC(C_AdmitDischarge.AD_DischargedOn)]

* Here, I am forced to employ double quotes due to the presence of embedded
* square brackets as well as an embedded apostrophe
This.icDynamicFormCaption = “[Notes for McDonald’s]”
* Alternatively, I could employ square brackets as the main character
* delimiter:

This.icDynamicFormCaption = [“Notes for McDonald’s”]
(Regardless of what character delimiters you prefer to employ, I recommend that you be consistent!)

Dump unnecessary leading equals signs (“=”)!

You will often see a leading equals sign (“=”) in older VFP code (especially in code ported over from FoxPro 2.x). A leading equals sign is necessary only in a couple of instances in VFP:
· when calling the SEEK() function
 and not storing the return value, e.g.,

USE (HOME(2) + 'Data\Customer') IN 0

=SEEK('Great Lakes Food Market', 'Customer', 'Company')

· when denoting an expression in a property in the Properties Sheet/Window; for example, when setting the .Caption property of _Screen:

='My Application (Version # ' + gcVersionNo + ')'

Side note, when setting the .Picture property for an Image control, include the equals sign as follows:
='MySplash.JPG'
If you specify MySplash.JPG without the equals sign and character delimiters, VFP will attempt to insert the path in front of the picture’s file name; the problem is that that path may not (in fact, most likely will not) be on your customer’s PC (when your application is production).
Use the "C" flavor/variation of string functions

In lieu of AT(), ATC(), CHRTRAN(), LEFT(), LEN(), LIKE(), RAT(), RIGHT(),STUFF() and SUBSTR(), employ AT_C(), ATCC(), CHRTRANC(), LEFTC(), LENC(), LIKEC(),RATC(),RIGHTC() and STUFFC().
	If the expression contains only single-byte characters …
	… is equivalent to …

	AT_C()
	AT()

	ATCC()
	ATC()

	CHRTRANC()
	CHRTRAN()

	LEFTC()
	LEFT()

	LENC()
	LEN()

	LIKEC()
	LIKE()

	RATC()
	RAT()

	RIGHTC()
	RIGHT()

	STUFFC()
	STUFF()

	SUBSTRC()
	SUBSTR()

As you can see from the above table, employing the "C" flavor/variation of the above string functions not only gives you the functionality of the "base" function; it also automatically enables your code to work with double-byte character sets (DBCS) for syllabaries (components of writing systems) such as hiragana and katakana.
Employ LEFTC(<string>, <n>) in lieu of SUBSTR…(<string>, 1, <n>)

Replace occurrences of SUBSTR(<string>, 1, <n>) and SUBSTRC(<string>, 1, <n>) with LEFTC(<string>, <n>). Doing so makes your code simpler, easier-to-read and easier-to-maintain.
Replace ! with NOT

Even though they are synonymous, employing 'NOT' rather than '!' makes your code more readable and self-documenting (in addition, using 'NOT' forces a space after it [thus making it more readable] whereas '!' does not require a space after it).
For example:

IF NOT DODEFAULT()
is easier to read than:

IF !DODEFAULT()
(but) Employ "positive" logic whenever possible

Sometimes, you have to employ negative logic in your code. For example, consider the following code often found in methods:

IF !DODEFAULT()

 RETURN .F.

ENDIF

Oops, I mean (the easier-to-read):

IF NOT DODEFAULT()

 RETURN .F.

ENDIF

<g> Here we only have the negative case to test for. Sure, you could do something like:

IF DODEFAULT()

 <Do "positive" processing>

ELSE

 RETURN .F.

ENDIF

but I find code is more maintainable when it:

1. exits as soon as possible
2. minimizes the amount of indentation

When indenting, indent two (2) spaces

Speaking of indentation, I prefer to indent my code two (2) spaces (e.g., within FOR/DO/SCAN loops, within the CASE statements, etc.). The reason I don't use more than two (2) spaces is because if I have to do a lot of indentation, I want to keep the code to fit on one (1) page (horizontally) and I don't want to have to unnecessarily continue code on another line.

I also have found that two (2) spaces is the minimum you need to see that the code is indented.
(Right-)align comments (and semicolons) in “compound statements

Back in VFP 7, I debugged another developer’s code and found that his REPLACE command was missing some punctuation (the code compiled correctly but did not run correctly [i.e., all fields were not REPLACEd] at run-time [in production]
); for example, in the following REPLACE command, a comma needs to be inserted just before the semicolon (and just after the character string 'Jeff') in the second line:

REPLACE Company WITH 'SouthWest Fox, Inc.',;

 Contact WITH 'Jeff';

 Title WITH 'Sir',;

 Address WITH '123 Elm Street', ;

 City WITH 'Tuscon'
In either case, I recommend aligning commas and semicolons as follows:

REPLACE Company WITH 'SouthWest Fox, Inc.',
;

 Contact WITH 'Jeff' ,
;

 Title WITH 'Sir' ,
;

 Address WITH '123 Elm Street' ,
;

 City WITH 'Tuscon'
You might even consider employing a TEXT…ENDTEXT solution, as described later, to eliminate the semicolons altogether.

Employ # in lieu of …<> … and … != … and NOT …
Even though they are synonymous, employing '#' rather than '<>' and '!=' requires one less keystroke and looks very close to the mathematical symbol for 'not equal to' (viz., '≠').

"Normalize" case when comparing character expressions
Supposed you have an expression:

'TEXT' $ UPPER(lcString)
"Normalize" it to:

UPPER('TEXT') $ UPPER(lcString)

In so doing, you can then properize the string as follows:

UPPER('Text') $ UPPER(lcString)

For example, instead of:

UPPER(lcOutput) = 'FILE'

employ:

UPPER(lcOutput) = UPPER('File')

Properizing makes the string easier to read (especially if you have "compound words" in your string [is "NOWHERE" "NowHere" or "NoWhere"? {cf. camel-notation discussion in the "Naming Conventions" practice}]). Code that is easier to read is also easier to maintain.
This tip/practice applies to expressions that involve UPPER(), LOWER() and/or PROPER().
Use TEXT…ENDTEXT
 for “cleaner” coding

When initializing a grid column’s .ControlSource

For example, instead of the following:

This.Column2.ControlSource = [(PADR(ALLTRIM(Prp_HouseNum) + " " + ;

 IIF(!EMPTY(Prp_StreetDir),ALLTRIM(Prp_StreetDir) + " ", "") + ;

 ALLTRIM(Prp_StreetName) + " " + ALLTRIM(Prp_StreetExt),36))]
you can do the following:

LOCAL lcControlSource, lcCRLF

lcCRLF = CHR(13) + CHR(10)

TEXT TO lcControlSource NOSHOW PRETEXT 1 + 2 + 4 + 8
 PADR(ALLTRIM(Properties.Prp_HouseNum) + SPACE(1) +
 IIF(EMPTY(Properties.Prp_StreetDir), SPACE(0),
 ALLTRIM(Properties.Prp_StreetDir) + SPACE(1)) +

 ALLTRIM(Properties.Prp_StreetName) + SPACE(1) +
 ALLTRIM(Properties.Prp_StreetExt), 36)

ENDTEXT

This.Column2.ControlSource = '(' + ALLTRIM(STRTRAN(lcControlSource, lcCRLF)) + ')'
Notice that the code within the TEXT … ENDTEXT command does not require semicolons (thus making it easier to read). In addition, without the outer character delimiters, you can focus more on the algorithm without worrying about getting the extraneous syntax correct.
N.B. I also took the opportunity to refactor the original code so that it:

a. no longer employs the NOT symbol (“!”) and
b. employs the SPACE() function in lieu of character-delimited (blank) expressions
When initializing a memory variable to a SQL-SELECT string

LOCAL lcFetchListSQL

TEXT TO lcFetchListSQL NOSHOW PRETEXT 1 + 2 + 4 + 8
 SELECT Cus_PK,
 Cus_Code, Cus_Prefix, Cus_Name, Cus_AddFK,

 This.Parent.CustomerStatus(Cus_PK) AS CustomerStatus,

 PADR(NVL(ALLTRIM(Add_LineOne), SPACE(0)), 35) AS StreetAddress,

 NVL(CtZ_CityName, SPACE(25)) AS City, NVL(CtZ_State, SPACE(2)) AS State,

 NVL(ALLTRIM(CtZ_PostCode) + IIF(EMPTY(Add_ZipPlus4), SPACE(0), '-' +
 Add_ZipPlus4), SPACE(5 + 1 + 4)) AS ZipCode

 FROM Customer

 LEFT OUTER JOIN Address

 LEFT OUTER JOIN CityZip

 ON Add_CtZFK = CtZ_PK

 ON Cus_AddFK = Add_PK
ENDTEXT
_ClipText = lcFetchListSQL
&lcFetchListSQL.

&& Now actually run the SQL Select command we just built up
?EXECSCRIPT(" …
Note the use of intraline (horizontal) white space as well interline (vertical) white space.
Doug Carpenter employs this technique for SQL PassThrough SQL as you can copy- (or Cut)-and-paste back and forth from the SQL Query Analyzer to Visual FoxPro code.
Note also that VFP 9's PRETEXT clause eliminates characters as part of the command; here is the definition for each of the numbers specified in the PRETEXT clause:

	#
	Meaning

	1
	Eliminate spaces before each line.

	2
	Eliminate tabs before each line.

	4
	Eliminate carriage returns, for example, blank lines, before each line.

	8
	Eliminate line feeds.

When loading up an array to be the RowSource for a combobox

LOCAL lcOptionList
TEXT TO lcOptionList NOSHOW

 Test

 Production

ENDTEXT

ALINES(This.aList, lcOptionList, .T.)
This.RowSource = 'This.aList'
Note use of intraline (horizontal) white space as well interline (vertical) white space.

SPACE() … the final frontier

In the "When initializing a grid column’s .ControlSource" section above, notice how I replaced the empty character strings to with calls to the SPACE() function. The advantage of using the SPACE() function is that you don't have to stop and count the number of spaces in empty character strings; this is especially helpful when you have character strings that contain 2 or more character strings.
SPACE(<n>) is equivalent to REPLICATE(‘ ’, <n>).

Finding and replacing text in the Command Window
I occasionally need to replace text in the Command Window (e.g., if I want to execute code that is very similar to code already in the Command Window except I need to replace several occurrences of two [2] characters with a set of two [2] different characters:

"CREATE CLASS lblMSBlinking OF C:\MS\MSMisc.VCX AS lblMSBase FROM MSFW.VCX").
I know of two (2) ways to find and replace text in the Command Window; after pressing <Ctrl+F> or selecting 'Edit | Find' from the menu, then:

1. find (via the [Find Next] button) the text and, while it's highlighted, [Replace…] it

2. highlight the entire character string and [Replace…] just the specific characters
Practice safe REPLACE-ing (in a non-current work area)
Be careful when REPLACE-ing a field in a work area that is not the current work area.
REPLACE <Alias.Field> WITH <New Value>

does not always work [e.g., if you’re at EOF() in the current work area] whereas:

REPLACE <Field> WITH <New Value> IN <Alias>

does.

Add pizzazz to your forms with Wingdings!
I often like to employ an arrow to draw a user’s attention from one part of a form to another (e.g., to indicate [something like] "after filling in this section, go over to this section").

One solution is to employ an Image control and set its .Picture property accordingly (e.g., you will find various arrow graphics in the HOME(4) + 'Icons\Arrows' folder).

Another technique you might not be aware of is to employ the Wingdings font. Here’s how:

· fire up the Windows Character Map applet

· switch the Font to “Wingdings” via the dropdown listbox at the top of the dialog
· click on the graphic that you would like to display in your form

· note its hexadecimal value (in the lower left corner of the dialog, just after the text “Character Code:”)

[image: image2.png]
· now add a label to your form and set its properties as follows:

	Property
	Setting/Value

	.Caption
	=CHR(0xE2)

	.FontName
	Wingdings

Adjust the .FontSize accordingly (you may also need to switch .AutoSize to .T.)

GPF-ing under various circumstances
If you start getting GPFs (General Protection Fault errors), try erasing your resource file (e.g., FoxUser.DBF/.FPT).
 For example, one day, I started getting Windows GPF errors when I started to trace through code that followed a SET STEP ON; erasing my resource file cleared up the problem right away. Other VFP developers indicate that this tip also applies when you experience GPFs when trying to BROWSE a table as well as when running the Class Browser.
Bottom line: if you start getting GPFs under any scenario, erase your resource file as the first resort!
This one tip could save you many (wasted) hours and allow you to once again develop and debug your VFP applications without productivity-impeding GPFs.
C0000005 errors
If you get the dreaded Fatal error: Exception code=C0000005 when developing as well as when running an .EXE outside the development environment, check if you have one (1) or more RETURN calls within a WITH…ENDWITH construct.

Doug Hennig mentioned this at GLGDW 2006.
 Bottom line, do not RETURN inside (within) a WITH…ENDWITH construct. See http://doughennig.blogspot.com/ for details.

Seeing all GetPict()-supported file types

Issuing GetPict() displays the "Open Picture" dialog:

[image: image3.png]
One problem, though, is that the list of valid graphics file types is chopped off. Since Microsoft did not turn on ItemTips for the "Files of type:" dropdown listbox, we cannot hover the mouse over that control to see all the file types supported by this dialog. When you drop the list down, however, the list of graphics files continues to be chopped off.
One way to see all the file types is to widen/expand the dialog.

Another way is to check out the "GETPICT() Function" help topic:
_VFP.Help(HOME() + 'Dv_FoxHelp.CHM', , 'GETPICT() Function')
That help topic lists all the graphic formats supported by the function.
Eliminating all errors in your VFP code!
To eliminate all errors in your code, simply issue the following command at the beginning of your program:

ON ERROR *

In VFP 9, you can employ the following:

CLEAR ERROR

Obviously, the above commands make it appear that no error has occurred; to truly write error-free code, simply be perfect <g>. A more helpful suggestion is to consult various resources on agile programming techniques. One book that comes to mind is Test-Driven Development: By Example, by Kent Beck, Addison-Wesley, 2003, ISBN 0-321-14653-0.
A free VFP-based unit testing tool called FoxUnit can be downloaded from www.foxunit.org.
Performance vs. maintainability

With respect to performance vs. maintainability:

"Programming for maximum speed shouldn't be your ultimate goal. There are many circumstances where the quickest code isn't easy to understand. The 'one line program' (an entire application in a single line of incomprehensible code) is an extreme example of this. This program may execute like a bullet, but do you really want to try to maintain the application?" (p. 23, "String Comparisons and Speed", Malcolm C. Rubel, FoxPro Advisor, December 1999)

That’s why I prefer the more succinct TRANSFORM(…) over the more verbose ALLTRIM(STR(…)).

As the all-time maintainer of other people's code, Doug Carpenter says: "Maintainability is a deliverable!"

The final word
My final word is that this white paper is not the final word on highly effective habits for VFP developers. You should always strive to constantly improve
 and learn from others. As a matter of fact, if you've got other tips you would like to share, send me an e-mail at abergquist@sbcglobal.net; I want to learn from you, too!
I also recommend reading what others have to say, both in written form as well as on-line forums:

Magazines

· FoxPro Advisor (http://foxproadvisor.com/)
· FoxTalk (accessible via www.pinpub.com)

· etc.

Books
· Hentzenwerke Publishing (www.hentzenwerke.com)
· etc.

On-line

· Microsoft’s web site (http://www.microsoft.com)

· ProFoxTech forum (http://leafe.com/archives/search/profox)

· Fox Wikis web site (http://fox.wikis.com)

· UniversalThread web site (http://www.universalthread.com)
· Using Win32 functions in Visual FoxPro (http://www.news2news.com)

· etc.

as well as in person:

· co-workers

· VFP developer groups/networks (like yours)
· VFP conferences

· etc.

� This white paper is based on Visual FoxPro 9 unless otherwise indicated.

� Controls the number of files displayed in the most recently used (MRU) list.

� Specifies the maximum number of items to initially display in IntelliSense drop-down list boxes.

� In VFP 8, you will find the “List display count” spinner control in the “Editor Options” section at the top of the “Tools | Options | Editor” tab.

� Whether you (a) manually type in the object’s name or (b) select it via IntelliSense or via the “Object List…”.

�� In the Hungarian naming convention, the 1st character is the scope:

1st character of memory variable name�
Meaning�
�
l�
Local�
�
t�
Parameter�
�
g�
Public (Global)�
�
p�
Private (Default)�
�
r�
Reference (passed by)�
�

and the 2nd character is the data type:

2nd character of memory variable name�
Meaning�
�
a�
Array�
�
c�
Character, Varchar, Varchar (Binary)�
�
y�
Currency�
�
d�
Date�
�
t�
DateTime�
�
b�
Double�
�
f�
Float�
�
l�
Logical�
�
n�
Numeric�
�
o�
Object�
�
q�
Varbinary, Blob�
�
u�
Unknown (can vary …)�
�

� The "W" in "Ctrl+W" harks back to dBASE days and stands for "Write".

� In this context, <Ctrl+Shift+Home>, <Ctrl+PageUp> and <Ctrl+PageDown> are equivalent keystrokes.

� <Ctrl+Shift+RightArrow> appears to consider a space a word (vis-à-vis <Ctrl+Shift+LeftArrow>).

� Useful, for example, to insert additional clauses in a SQL-Select statement in the Command Window.

� <Ctrl+F1> is better than <Ctrl+Tab> (move to the next window) and <Ctrl+Shift+Tab> (move to the previous window) because <Ctrl+Tab> and <Ctrl+Shift+Tab> both stop working when they get to “the end of the line” (i.e., the last window).

� I prefer using SnagIt to take screen shots; check SnagIt out at � HYPERLINK "http://www.techsmith.com/snagit.asp" ��http://www.techsmith.com/snagit.asp�.

� The TO SCREEN clause has been in FoxPro’s implementation of SQL-SELECT since FoxPro 2.x!

� Since, according to VFP 9's on-line help, "Coverage.App, the Coverage Profile application included with Visual FoxPro, cannot be included with your distributed runtime applications."

� As opposed to the SEEK command.

� SEEK('Great Lakes Food Market', 'Customer', 'Company') yields a "Function name is missing)." error message. Evidently, VFP gets mixed up between the SEEK() function and the SEEK command.

� My thanks to Drew Speedie for this tip.

� For the life of me, however, I cannot replicate the exact problem today (I debugged the code in question back on 2/11/2000).

� Or the SET TEXTMERGE command.

� Greg Gurshney of the Chicago FoxPro User/Developer Group (CFUDG) pointed out that, after you have found the text, you can press <Alt+R> to start the replace, press <Alt+R> if there is a 2nd replace, and finally press ‘R’ for any subsequent replaces.

� Development Tip: I’ve put Character Map on my Start bar for quicker (more convenient) access.

� Note that since this is an expression, you must prepend it with an equals sign (“=”); if you don’t, your label’s .Caption will be the string “CHR(0xE2)”.

� My thanks to Drew Speedie and Doug Carpenter for reminding me of this tip.

� The Great Lakes Great Database Workshop conference (held April 21-24, 2006 in Milwaukee, WI).

� My thanks to Pete Beddows, fellow member of the FoxPro Developers Network of San Diego, for pointing this out to me.

� When I worked for IBM in the 1980's, I primarily programmed in APL (A Programming Language). I once encountered a 300+ line editor written in APL in which each line had multiple statements (something APL allows) after which it would branch to another line in the program (unfortunately, yes, APL has a "goto" command [viz., "→"]). Although impressive in its capabilities, the program was a convoluted mess (read: maintenance nightmare). I personally do not code this way and I certainly do not recommend that you do so either. Maintainability should be a primary focus when you develop software.

� Cf. Ken Levy's statement that "Shipping is a feature!" <g>

� Cf. CPIM (Continuous Process Improvement Management).

The 27 or so Habits of Highly Effective VFP Developers.Doc
 Page 14 of 28
Art Bergquist

